

DVGW Research Center at the Engler-Bunte-Institut (DVGW-EBI)

Karlsruhe Institute of Technology (KIT)

Engler-Bunte-Ring 1, 76131 Karlsruhe

Storage of volatile renewable energy in the gas grid applying 3-phase methanation

Manuel Götz*, Dominic Buchholz, Siegfried Bajohr, Rainer Reimert

* Phone: +49 721 608 4 4815, email: goetz@dvgw-ebi.de

SPONSORED BY THE

Federal Ministry of Education and Research

Objective	Power storage	Gas grid as energy storage
 Strong increase of wind power and photovoltaics World total installed capacity of wind power ^{300.000} _{250.000} _{250.000}	 Technologies with large capacity and storage duration of days or weeks: Pumped storage hydro power 	 Gas grid is well structured and developed in many countries Energy distribution

- Drawback: both are strongly fluctuative
- Power input and output of electricity grid have to be in balance permanently
- ⇒ Large storage capacity necessary

Electrolysis

- Use of surplus electricity for water electrolysis
- Operation at elevated pressure (20 30 bar)
- PEM electrolysis can handle volatile electricity

- \Rightarrow High efficiency up to 85 %
- ⇒ Capacity very limited in most countries
- Compressed air energy storage (CAES)
- ⇒ Low energy density
- \Rightarrow Diabatic: poor efficiency of < 50 %
- ⇒ Adiabatic: not yet state-of-the-art
- Power-to-Gas
- \Rightarrow CH₄ as chemical energy carrier
- ⇒ Highest energy density
- ⇒ Efficiency up to 64 % (from power to CH₄)

 Large storage capacity of > 3600 TWh source: IGU, 2006

CO₂/CO sources

Process chain "Power-to-Gas"

3-phase methanation

Fundamentals of methanation

- $3 H_2 + CO \rightarrow CH_4 + H_2O_{(g)}$ $\Delta_R H^0 = -206 \text{ kJ/mol}$
- $4 \text{ H}_2 + \text{CO}_2 \rightarrow \text{CH}_4 + 2 \text{ H}_2\text{O}_{(g)} \quad \Delta_R H^0 = -165 \text{ kJ/mol}$
- Removal of reaction heat is the main issue
- State-of-the-art methanation reactors:
- ⇒ Fixed-bed and fluidized-bed reactor
- Novel concept: 3-phase methanation
- ⇒ Reactor is filled with an inert liquid
- \Rightarrow Catalyst (< 100 µm) is suspended in this liquid

Slurry bubble column 20 bar 300 °C gas bubbles liquid + catalyst H₂ CO/CO₂ SNG H₂O Boiling water Liquids - Silicon oils (X-BF) - Dibenzyltoluene (DBT) - lonic liquids

Advantages of 3-phase methanation

Only one reactor necessary

💻 thermal power

- High heat capacity of the liquid
- ⇒ Simplified removal of waste heat
- ⇒ Isothermic operation possible
- ⇒ Buffers the effect of fluctuating feed streams

Aim of development

 Identification of operating parameters for optimized mass transfer in the liquid phase

Optimization of liquid-side mass transfer: $V \phi_i / V_R = k_L a \cdot (c_{iL}^* - c_{iL}) \Rightarrow 1$. Increase $k_L = 2$. Increase $a = 6 \cdot \epsilon_G / d_{bubble}$

1. Influence of gas velocity u_G on $k_L a$ Image: second systemImage: second system</t

2. Influence of catalyst on k_La

- Gas holdup $\varepsilon_G \uparrow \Rightarrow a \uparrow$
- \Rightarrow The gas holdup needs to be increased

3. Methanation in a slurry bubble column reactor

- Decrease of $c_{\rm S}$ and $d_{\rm P}$ increases conversion
- For $u_G = 1.1$ cm/s and T = 270 °C a high

