

Stoffübergang beim Vakuumaufkohlen – Untersuchungen zur Adsorption und Dissoziation von Acetylen auf Edelstahl

Reinhard Denecke

Andreas Bayer, Jürgen Rossa, Hülya Ünveren, Hans-Peter Steinrück

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

Unser Ziel im Rahmen des DAVE-Projekts

Mikroskopisches Verständnis des Adsorptions- und Dissoziationsschritts von C₂H₂ auf Stahloberflächen

- Modelluntersuchung mit einem Molekularstrahl (p<10⁻⁶ mbar)
 Dissoziationswahrscheinlichkeit abhängig von
 - Oberflächentemperatur
 - Vorbelegung und Vorbehandlung
 - Gastemperatur
- Untersuchungen zur Zusammensetzung der Reaktionsprodukte in <u>Reaktionszelle</u>, gezielte Probenpräparation
 → Adsorption ohne Gasphasenpyrolyse
- XPS- und <u>AES-Messungen</u> der Oberflächenzusammensetzung
 Reproduzierbarkeit, Stöchiometrie, Kohlenstoffbelegung

Molekularstrahl

Überschalldüsenexpansion

- ⇒ Umwandlung von thermischer Energie & Rotationsenergie in gerichtete kinetische Energie
- Schmale Energieverteilung \Rightarrow monochromatisch
- Änderung der Energie durch Heizen d. Düse & Mischen mit Trägergas
- Räumlich begrenzter Strahl (= lokaler höherer Druck) durch Blenden

Experimentelle Durchführung

Reaktiver Haftfaktor

Ergebnisse mit Molekularstrahl

Haftwahrscheinlichkeit

(Miyata, Hudson, J. Vac. Sci. Techn. A 3 (1985) 1535)

Maximaler Haftfaktor → Diffusionsbegrenzung

Ergebnisse mit Augerelektronenspektroskopie

Ergebnisse mit Molekularstrahl

Ergebnisse mit Augerelektronenspektroskopie

Bei 1100 K N-Anreicherung durch Heizen (ohne Cr) Acetylen reduziert N-Verunreinigung durch Reaktion!

Ergebnisse mit Augerelektronenspektroskopie

Keine nennenswerte N-Kontamination nach bis zu 3 Stunden

Ergebnisse mit Massenspektrometrie

Ergebnisse mit Molekularstrahl

Variation der kinetischen Energie durch Seeding mit He

Reaktionszelle

- Teile (Kammern, Halterungen) gefertigt
- Aufbau aus Einzelkomponenten

➔ Aufkohlen ohne Pyrolyse, Gasanalyse

QMS

Messzelle

Reaktionszelle

Temperaturmessung

Heizung durch Direktstrom

Aufkohlen in Reaktionszelle

Temperaturrampe mit C_2H_2 (1,04 mbar, C_2H_2 mit Aceton)

Several masses while dosing C_2H_2 = 1.5 sccm at T = 303 K \rightarrow 977 K \rightarrow 342 K

H₂-Bildung, Methan-Bildung

Ergebnisse

- Erste Messungen des reaktiven Haftfaktors auf Stahl
- Anstieg mit Temperatur bis 1000 K

→ vermutlich diffusionsbegrenzt

- Stickstoffanreicherung oberhalb 1000 K
 - → verhindert Messungen oberhalb 1000 K
 - → wird durch Acetylen bei 1000 K abgebaut
- Kein Einfluss der Gastemperatur (kinetische Energie)
- Aufkohlung in Reaktionszelle mit kaltem Gas
 - → Methanbildung (Rußbildung) beobachtet

→ Wesentliche Ziele wurden erreicht